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1/INTHODUCTION

This monograph discusses elastic longitudinal models of space launch vehicles and

methods used to determine the dynamic characteristics needed for analysis of vehicle

response and stability. The types of vehicles considered are multistage liquid and

solid propellant vehicles and vehicles with clustered tanks. Longitudinal dynamics have

been uncoupled from lateral and torsional dynamics in the frequency range of interest

for most launch vehicle systems studied to date; however, such coupling can be impor-

tant for spacecraft as well as for launch vehicles with the proper characteristics.

The basic method of analysis of longitudinal dynamics problems is to formulate

a mathematical model for the vehicle, establishing mass and stiffness model properties

from corresponding vehicle properties. Normal modes of the model are then deter-

mined, and the response to a particular excitation is found from the normal mode and

excitation properties. This method closely parallels that for lateral dynamics.

Since analyses are made using properties of the model, the results are only as

good as the model. The model requirements depend on the particular problem being

studied and the desired results. Simplifying assumptions are usually made in ideali-

zin_ the vehicle, so that only significant dynamic phenomena are represented; usually

only the lowest frequency modes of the vehicle are of interest. To a great extent,

Judgment requiring some experience and understanding of the vehicle structural com-

ponents must be used in developing a simple but adequate vehicle model.

The most significant masses involved in launch vehicIe longitudinal dynamics are

the propellant masses; other important masses related to the vehicle lower frequency

modes are usually the remaining heavier masses such as payload and engines. The

significant structural elements are propellant tanks, interstage adapters, and tank

bulkheads. Vehicles are usually symmetric about their longitudinal axes, and this

permits the use of what is effectively a one-dimensional model.

The propellant mass varies slowly with time in the particular stage that is burn-

ing. This permits the assumption that the mass is constant at any particular instant

of time. Analysis on this basis is usually referred to as the time-slice approach and

is adequate for most problems.

The most significant stfffnesses are usually related to the propellant tanks, in-

terstage structures, and engine supports. Stiffnesses related to propellant tanks vary

with time since the basic configuration of the vehicle is changing as propellants are
consumed.

For liquid propellant launch vehicles with thin-skinned cylindrical tanks, lumped-

mass models are adequate for determination of the lowest vehicle modal proper-

ties. For vehicles with more complex tank geometries, more general methods such



as the use of finite shell elements to construct a vehicle model may be required.

Models of solid-propellant rockets may be obtained by either continuous representation

of the core and casing or by making a simple model that takes into account the mass

and shear stiffness of the solid propellant core.

The problems to be analyzed using longitudinal models include response to engine

ignition and shutdown transients, release of a vehicle from its launcher, and the

stability of engine-structure coupled oscillations. A second stability problem

peculiar to liquid-propellant vehicles with thin-skinned tanks involves coupling between

structural motions and the tank pressure regulation system. Each of these problems

may require different emphasis on details of the model used.



2/STATE OF THE ART

The analysis of liquid- and solid-propellant vehicle longitudinal dynamics may be dis-

cussed separately since the modeling problems are of a different nature for the two

types of vehicles.

2.1 LIQUID-PROPELLANT VEHICLES

The unique problem in liquid-propellant vehicles is representation of liquid-propellant

tanks. The longitudinal dynamics of elastic tanks containing liquid propellants have

been analyzed in considerable detail; for example, Reference 1. The types of tanks

that have generally been considered are axisymmetric. Effects that have been con-

sidered include tank initial stresses, liquid surface waves (sloshing), tank surface

motions that are not symmetric, compressibility of ullage gas, elastic effects of

bulkheads, and orthotropic tank construction. Analyses including many of these ef-

fects are very complex; as a result, use of such analyses in developing a vehicle

model has been limited.

The tank models used extensively to study vehicle longitudinal dynamics have

generally included a simplified representation of the tank longitudinal dynamics. Re-

ference 2, for example, presents various single-degree-of-freedom models for

longitudinal vibration analysis of liquid-propellant cylindrical tanks. These single-

degree-of-freedom models were derived based on the assumption that the liquid has

a longitudinal acceleration (relative to the tank bottom) that is constant from the liquid

surface to the bottom of the tank. Liquid motion is due to tank wall and tank bottom

radial and longitudinal deformations. These deformations per unit inertial force of

the liquid provide information that can be used to develop a model for the tank. Re-

ference 3 uses a similar tank model to study the coupling between vehicle longitudinal

oscillations and propellant tank pressure regulation at launch for an Atlas vehicle.

Reference 4 indicates how to include the effective stiffnesses of bulkheads forming

tank bottoms for cylindrical tanks. Extension of the single--degree-of-freedom spring-

mass model to include higher degrees of freedom is also discussed in Reference 3.

Simple models for other commonly used tank shapes, such as ellipsoidal tanks

and tanks with conical sections, may be derived in a manner similar to models derived

for cylindrical tanks, but the problem is somewhat more difficult.

A recently developed method of liquid tank representation is presented in Refer-

ence 5. A finite element representation of tank and other vehicle components is used

to develop the vehicle stiffness matrix; the vehicle is divided into axisymmetric shell

components. Fluid motions are assumed to be consistent with the shell component

distortions while fluid sloshing effects are neglected. The vehicle stiffness



and mass matrices are obtained by superposition of matrices of individual elements.

Only axisymmetric shell motions are considered. Each tank may be composed of el-

lipsoidal, conical, and cylindrical elements. This model may include higher modes

of the tank, bulkhead effects, and general shapes of tanks.

Effects not included in the simpler spring-mass models or the model of Reference

5 are tank motions that are not axisymmetric, i.e., motions that vary around the tank
circumference and the effects of fluid surface motion.

The vehicle mass and stiffness matrices that result from use of the tank models

discussed may be operated on using standard techniques to determine the vehicle

natural frequency and natural mode properties to be used in longitudinal response

analyses.

The stiffness of a local structure may be evaluated by use of finite elements to

develop stiffness matrices by methods such as that presented in Reference 6. Local

structure stiffness should also be verified by tests where possible.

2.2 SOLID-PROPELLANT VEHICLES

Solid-propellant rockets have generally been represented by continuous models: Re-

ference 7 provides a detailed analysis of the structural dynamics of a solid rocket.

It includes a discussion of propellant stress-strain properties and analysis of several

problems using a continucms representation. The effective longitudinal stiffness of

the solid rocket depends primarily on the solid-propellant longitudinal shear stiffness

since inertial forces acting on the core material are transmitted to the rocket casing

through shear stresses developed in the core material. The rocket casing may be

relatively stiff longitudinally in comparison to the core; in this instance the simplify-

ing assumption of a rigid casing might be made.

The remainder of the vehicle, adapters, payload, etc., may be modeled in the

same manner as discussed for the liquid-propellant vehicle.

4



3/MODEL REQUIREMENTS AND RECOMMENDED PROCEDURES

The problem of determining the response of a structure to a particular forcing func-

tion consists of formulating the equations of motion for the structure and obtaining a

solution to these equations. The solution is usually easier to obtain if the equations
of motion are written in terms of the vehicle normal mode coordinates. The use of

matrix notation also permits simplified discussion of the general analytical problem

and provides a compact format for organizing data for computations.

Natural modes and frequencies may be determined from equations of motion of

a system with external forces equal to zero. The equations of motion may be derived

from considerations of dynamic equilibrium or by use of energy concepts and LaGrange's

equation. As a simple example of the use of equilibrium to derive the equations of

motion, consider the two-degree-of-freedom system of Figure 1. The symbols m and

K represent masses and spring rates, x represents displacement, and subscripts 1,

2, and 3 refer to nodes of the structure. Masses are lumped at these nodes, and

massless springs connect the nodes in this particular example.

4
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m 1

.. Kl2(Xl - x2)

_X2K23 mlXl Kl2(X I - x2) m2

j,#/, m2"_2 K23 x 2

Figure 1. Two-Degree-of-Freedom System

From a consideration of equilibrium of inertial forces and spring forces under

free vibration,

-(Xl -x2) KI2 - ml _I = 0

(x l-x2) K12-K23x 2- m 2}42 = 0

(i)

(2)



or, in matrix notation, after rearranging terms,

m x2 I-K12 K12 + K2

= o (3)

or simply,

[M] [_} +[K][x]. = 0 (4)

where the matrix containing the mass terms is the mass matrix and the matrix con-

taining the spring or stiffness terms is the stiffness matrix.

LaGrange's equation for determining the equation of motion is

5t L 5qn J 5qn + 5qn
o (5)

where KE is the kinetic energy, PE is the potential or strain energy, W is the work

done by external forces acting on the system, t is time, and qn is a generalized co-

ordinate of the system. For the free vibration of the system in Figure 1,

ql = Xl (6)

q2 = x2 (7)

1 2

KE = _-(ml_:l +m 2 _:22) (8)

l(x )2 lx22PE = _- 1 -x2 K12 +2- K23 (9)

w = o (lO)

Substitution of the expressions for KE, PE, and W into Equation 5 and letting q = x 1

yields one equation of motion; letting qn = x2 yields the second equation of motion.

These are the same equations of motion derived from the consideration of equilibrium.

With the assumption of simple harmonic motion, i.e.,

x = x ° sin oJt (11)

\



where x o is an arbitrary amplitude and co is a natural frequency, Equation 4 becomes

_co2 [M_ [x] + [K_ Ix] = 0 (12)

or

Ix] : [K] -1 [M] Ix]
2

50

= [D] Ix] (13)

With the matrix equation in the above form, iterative methods (see Reference 8)

may be used to determine the lowest and successively higher natural modes and

corresponding natural frequencies. For a particular natural frequency 50n' a set of x

displacements which satisfies Equation 13 is the natural mode, [¢n], corresponding

to COn, i.e., at ¢o = o_n, Ix] = IONS" []_] is called the dynamic matrix.

The response of a vehicle to a particular forcing function may be found by sum-

ming the responses of its natural mcdes. The equations of motion including external

forces become

[M_ [_] +[K][x] = IF} (14)

The displacements Ix] may be written as the summation of the responses in the indi-

vidual modes:

n--II1

xi Cni%
n=l

(15)

or, in matrix notation,

Ix] = [¢2 [q}

where

[¢] = [¢1 ! ¢2i " " " iCm],
[q] =

ql

q2

qm

(16)

(17)

Substituting Equation 16 into 14,

[M] [¢_[_] + FK_ [¢] [q] = IF] (18)

7



Premultiplying each term in Equation 18 by [_]T yields

[¢]T [MIle] [q] +[¢]T [K][$] [q} = [¢]T IF] (19)

Because of the orthogonality of natural modes with respect to the mass and stiff-

ness matrices, i.e.,

[¢n }w [M] [¢s} = {¢n}w [K] [¢s]

= 0 forn _s (20)

the equations of motion in terms of the natural modes yield one uncoupled equation for

each mode of the form

{¢n }T [M][¢n} °_n + {¢n }T [K] [¢n] qn = [¢n }T IF} (21)

The terms [¢n]T [M] [¢n] and [¢n }T [K] [¢n } are usually referred to as the generalized

mass and stiffness of the n th node and expressed as

_n = [¢n ]T [M] [¢n] (22)

K = {¢n} T [K] [¢n} (23)
n

Noting that

2 Kn
o_ - (24)
n

n

is the square of the natural frequency of the nth mode and letting the generalized force

of the n th mode be defined as

Qn(t ) = {¢n}T IF} (25)

Equation 21 becomes

2 Qn (t)

a'n + COn qn - m.n (26)

The modal amplitude (generalized coordinate) qn may be found for each mode as

a function of time from Equation 26, and then the total response may be found from

Equation 16.



Then, to determine the response of a structure using modal properties, a model

that yields mass and stiffness matrices for determining modal properties is desired.

The selection of the specific model must be made in a manner such that modal pro-

perties are accurately defined where forces are applied and such that resulting modes

give accurate values of the generalized mass. The model must be defined in enough

detail to provide accurate response information in the area of interest on the vehicle.

3.1 LIQUID-PROPELLANT VEHICLE

A vehicle may be made up of several stages, with the major components by weight

being propellant tanks, engines, payload, and fairings. Propellant tanks represent

important portions of the liquid-propellant vehicle model since propellant weight is a

large part of vehicle weight throughout most of the flight. Tank models are parti-

cularly important at liftoff when the tanks are full and for vehicles with only a few

stages.

Tank models may be of the lumped parameter (spring-mass) type, which are

often adequate to represent the dynamic characteristics of certain types of tanks,

particularly cylinders. Continuous representations of the tanks may also be used.
The method of Reference 5 uses sets of assumed displacement functions for tank

elements in a manner that takes into account tank shapes made up of cylindrical,

eUipstodal, and conical elements.

The models for structural elements not containing liquid may be represented by

simply the effective longitudinal stiffnesses of the structural element. This stiffness

may be determined by tests or by detailed analysis using methods for developing
multidimensional stiffness matrices of structures, such as the methods discussed in

Reference 6.

In the following paragraphs, spring-mass models for various forms of cylindrical
tanks and models based on References 2 and 3 are discussed.

3.1.1 SELECTION OF MASSES. The number of degrees of freedom of a model

determines the theoretical number of modes and frequencies. However, for a model

with a large number of degrees of freedom, only a limited number of modes and fre-

quencies may be determined accurately, and only the characteristics of the lowest

modes are generally of interest. As mentioned above, the major portion of vehicle

weight is propellant weight throughout much of the vehicle flight. 2_e model of each

propellant tank must represent the significant longitudinal modes of the tank in the

frequency range of interest for the vehicle. This frequency range is generally from

5 to 30 Hz for liquid-propellant launch vehicles. When lower stage liquid tanks are

full, several longitudinal degrees of freedom of the propellant mass might need to be

included in a model to represent the lowest four or five elastic modes of the vehicle.

As propellant tanks become more nearly empty, a single-longitudinal-degree-of-

freedom representation of a propellant mass may be all that is required to compute

the lowest four or five vehicle modes.



The details of the representation of other portions of the vehicle are not usually

as critical as the propellant representation. Uncoupled longitudinal frequencies of

engines, payloads, and fairings may be well above the lower vehicle frequencies, and

therefore these components might be represented by a single lumped mass, or in

more detail if desired. In a vehicle with a large number of stages the interstage

stiffnesses may be relatively flexible and have a more dominant effect than upper

stage tank stiffnesses on the vehicle lower modes and frequencies. In such instances

upper stages might be represented by lumped masses connected by the interstage

stiffnesses. In other words portions of the vehicle which are relatively rigid (have

high uncoupled natural frequencies) might be considered as lumped masses, whereas

portions of the vehicle which have low uncoupled natural frequencies and large masses

must be modeled in enough detail to represent these frequencies.

3.1.2 LIQUID PROPELLANT AND TANK REPRESENTATION: SPRING-MASS

MODELS. In the discussion below, simple single-degree-of-freedom spring-mass

model representations are developed for cylindrical tanks. The flexibility of an el-

liptical tank bottom is included based on the results of Reference 4. Effects of

stringers and buckled skin are considered as variations of the basic model. A model

for small ullage is developed for use in analysis of tank pressure regulation systems.

Models for several degrees of freedom and for cone-cylinder tanks are also con-

sidered. These models are based on models developed in References 2 and 3.

The analysis of a coupled elastic tank and propellant mass, even for a highly

simplified case, becomes a very complicated eigenvalue problem. Specifically, a

solution must be obtained that satisfies the differential equations for the liquid and

the elastic shell, as well as appropriate boundary conditions at the tank walls, the

tank bottom, and the liquid free surface. A rigorous analysis of this type is reported

in Reference 1. The results yield the natural frequencies for the tank and propellant.

A number of other analyses have also been attempted for the coupled liquid and

elastic container. Most of these generate a great deal of mathematical analysis that

is of very little use in defining an analytical model for the tank. It is apparent, then,

that other, more simptified techniques must be used. The continuous analysis can then

be used as a check on the dynamic characteristics of the simplified representation.

A major building block in the development of a longitudinal structural model is a

lumped parameter model for each propellant tank. In general, such tank models have

been restricted to a single (predominant) mode of the coupled elastic shell and propel-

lant mass. However, there is reason to believe that a single-mode model is not ade-

quate in all cases. Furthermore, the development of a multimode model for the pro-

pellant tank is feasible.

As a basis for developing a tank model, first it is necessary to establish a set of

approximate equations for the shell and the liquid. For example, consider the tank

10



shown in Figure 2, filled to a height L with a

nonviscous, incompressible liquid, where the

axial acceleration of the fluid is _. If it is as-

sumed that the tank shell is thin, that any ef-

fects of preloading can be neglected, and that

the loading is axially symmetric, then the fol-

lowing equations can be developed (Reference

10).

d 4
E h 3 Wr E h

+_W

12 (1 - v 2) dX 4 a 2 r

+-- NX= pa
r=a

(27)

2
dUx 1 - v v

dX Eh NX - a Wr

h _==4m

X

' I '
__ I

!

1
L

I
¥

Figure 2. Cylindrical Tank and

Liquid

(28)

where

r

U

X

NX=

P

E

the radial displacement of a shell element

the longitudinal displacement of a shell element

the axial force/unit circumferential length

= the liquid pressure

= Young's modulus

= Poisson's ratio

a = the shell radius

h = the shell thickness

Equations 27 and 28 are essentially the same as those defined for a cylindrical

shell (Reference 9) and a static loading condition. If, in addition, the shell is very

d4w

thin, the r term contributes very little to the gross deformation of the shell.
dX 4

Neglecting this term, Equation 27 becomes

11



W
r

a 2 1 a_
i

Zh Nx
(29)

For a nonviscous, incompressible liquid, the fluid velocities are defined in terms

of a velocity potential _ by Laplacefs equation, i.e.,

52_ 1 _ 1 _2 2_
-- +--+ + - 0

2 r_r 2 _2_r r _ _X 2

(30)

where

80 dr

5r dt

-- r_

r 5_b dt

5_) dx

5X dt

When all forces applied to the fluid are axially symmetric, ¢_ is not a function of the

coordinate _b and Equation 30 reduces to

52_) 1 5_) 52_)
-- +---- + - 0

5r 2 r 5r 5X 2
(31)

For small fluid velocities, the total fluid pressure is given by

P = p + _(X- L) (32)

Equations 28, 29, 31, and 32 are used along with the appropriate boundary con-

ditions of the liquid surface, tank wall, and tank bottom to form the basis for the

analysis given in Reference 10. In this analysis, the effects of shell inertia for a

thin shell are neglected in comparison to the liquid inertia, such that Equations 28 and

29 also apply to the dynamic condition.

In order to further simplify the development of a lumped parameter model, the

velocity potential term in Equation 32 is usually neglected; i.e., the following approxi-
mation is made:

p = p _ (L- X) (33)

12



Equations 28, 29, and 33 are then used to develop the tank model. This neglects

all contributions due to the liquid velocities, as defined by the velocity potential _, and

the liquid-free surface waves.

Equations 28, 29, and 33 can also be used as a basis for developing a multimode

tank model by dividing the tank into two or more sections. This approach can account

for the higher tank modes as well as variations in tank geometry and skin thickness.

The propellant tank most commonly encountered is usually an internally pres-

surized circular cylinder with a rounded bottom. In many cases, the bottom is ap-

proximately elliptical in shape and can be either concave upward or downward.

In this section, a basic single-mode tank model is developed for the case of a

large tank ullage volume where the pressure essentially remains constant. This model

is then modified to account for the individual effects of stringer reinforcement and a

buckled skin with stringer reinforcement.

3.1.2.1 Basic Single-Mass Model. The tank shown

in Figure 3 is partially filled with an incompressible

liquid to a depth L and the tank ullage is pressurized

with a gas to some constant pressure. The tank is an

elastic circular cylinder with a radius a and a con-

stant thickness h. The tank bottom, also elastic, has

an elliptical shape, where the major semi-axis is a

and the minor semi-axis is b. The bottom can be

either concave upward or downward. In addition, it

is assumed that all loading on the tank and liquid is

axisymmetric.

Figure 3. Partially Filled
For an axial acceleration of _, the liquid pres- Tank

sure acting upon the wetted portion of the tank is

given by Equation 33. Hoop stresses are produced in the tank skin due to this pres-

sure. These stresses result in radial and longitudinal displacements for each ele-

ment of the tank with respect to the bottom. The radial displacement, which is

proportional to the pressure, is shown in Figure 4a.

When the tank is assembled with a vehicle, an acceleration of the masses above

the tank results in a longitudinal force acting on the top of the tank. This force pro-

duces an additional axial stress in the tank skin and displaces the tank and the liquid

center of gravity.

A flexibility matrix can be developed relating displacements at X = L and center

of gravity of the tank to a force at X = L and an effective "liquid inertial force" acting

at the center of gravity of the liquid when the bottom of the tank is fixed as shown in

Figure 4. A stiffness matrix and a corresponding model for the tank can then be

13



(a)

Figure 4. Tank Strains

N X

developed.

References I0 and 2.

This approach yields a single-mass tank model similar to that obtained in

The equivalent single-mass model is indicated in

Figure 5. Nodes i and 2 of the lumped parameter model

are used to signify, respectively, the tank at X = L

and the liquid center of gravity. The displacements

of these points relative to the tank bottom (i. e°,

relative to X = 0 in Figure 3) are denoted by x 1 and

x 2. The force acting at the top of the tank is F 1 and

the effective force acting at the center of gravity is

F 2, the total inertial force of the fluid due to _, i. e°,

W 1

Xl t K 1

x2 [2 m

K 2

Equivalent Tank

Model

Figure 5.

K3

F 2 = Vp _ = m _ (34)

where V, p, _, and m are the tank volume, fluid mass density, fluid acceleration, and

the fluid mass, respectively. The liquid volume V for the cylindrical tank with an el-

liptical bottom is given by

2
V = na LD (35)

where

D = 1
2 b

3 L (36)

Therefore

F 2
(37)

14



P_
2

ya LD
(38)

It should be noted that when the bulkhead in Figure 3 is inverted (the dashed line), b
takes on a negative value but the above expressions remain valid.

The relationship between displacements and the liquid inertial force are developed

first. The longitudinal and circumferential stresses and strains in the thin tank skin

due to the fluid pressure, p, axe (to a close approximation) given by

cr = 0
X

pa

y h

_pa
x Eh

(39)

where ax and Cryare the tank longitudinaland hoop stresses, _x and _y are the longi-
tudinaland hoop strains, _ is Poisson's ratio,and E is Young's modulus. Positive

stresses are defined to be compressive in the longitudinaldirectionand tensileinthe

hoop direction;positivedisplacements of the tank top and liquidcenter of gravity are
downward.

The longitudinal displacement of the tank at the liquid surface due to the fluid pres-
sure, p, is

L

x12 = f _xdX (40)
O

where Ex is given by Equation 39. Thus, substituting Equation 33 into 39,

L va_)x (L -X) dX va L2px
x12 = / Eh = 2Eh (41)

o

Substituting in the expression for p _ from Equation 38 yields

vLF
2

x12 2_DEha (42)

15



The tank wall radial displacement, w r, due to p (Equation 33) is given by

2 2
pa pa (L-X) k"

W = aE" =_ =
r y Eh Eh

(43)

The displacement of the center of gravity due to w r and the tank bottom stiffness is

then approximated by

L F2 2 0_aL 2 F2
= 2__LL f 2_.aw dX+ .... +--

x22 3 V o r KB 3 DEh K B
(44)

where K B is the tank lower bulkhead stiffness (the appropriate values for K B are de-

fined parametrically later). Substituting Equation 38 for p _ into Equation 34 yields

2 L F 2 F 2 .

x22 - 3_aD 2Eh + KB
(45)

Considering an axial load acting on the tank, as shown in Figure 4b, F 1 is an axial

load in the tank skin resulting in a load per unit circumferential length of the tank skin

given by

F 1
N = -- (46)

x 2_a

The stresses and strains in the tank due to F 1 are

F1/O" = m

x 2yah

a = 0
Y

- FI I

x 2_aEh

_F 1
_ -
y 2_aEh

(47)

while the displacements of the tank at X = L and center of gravity due to F 1 are

L LF

Xll = f _ dX = 1x 2_aEh
o 16

(48)



L

Lf 2x21 ='_'- 2_a c dX •Y
0

_LF
1 1

V 2_aDEh (49)

The axial stiffness of the tank skin is

2_aEh
K - (50)

L

Then the relationships between forces and displacements from Equations 42, 45, 48,
and 49 are

Xll 1

X
12 v

x22 4 1
+

d22 = _ = 3D 2K KB

(51)

or, in matrix notation,

{}[ddl]{
x 2 d21 d22 F 2

= [d] IFI (52)

The [d] matrix in Equation 51 can be inverted to obtain a stiffness matrix for the tank.

The springs of the equivalent model for the tank can be obtained from this matrix.

From Equation 51, F 1 and F 2 are

3 D 2 K2
4K +-

KB 3PDK
F 1 = x 1 ...... x 2 (53)

4- 3b '2 3D2K 3D2K+-- 4 - 3V2+ ------

KB KB

17



F 2

-3_ DK

4 -31_2+ 3D 2-_-K xl +
K

B

3D2K

2 2 K
4-3_ +3D

K B

or, in matrix notation,

Kll

K21

K
12

K22
I::l

Therefore,

K
ii

4 K + 3D 2 K2

K B

4 - 3_ 2 + 3D 2 K

K B

x 2

KI2 = K21
-3_DK

K

4 - 3v 2 + 3D 2 _B

K22

3D2K

4 - 3v2+ 3D 2 K_
K

B

The springs of the equivalent tank model shown in Figure 5, determined from the

coefficients of the stiffness matrix (as indicated in Reference 6), are

K 1 = _ K12

K 2 = K22 + KI2

K 3 = Kll + K12

(54)

(55)

(56)

(57)

Thus,

K
1

3_DK

4 - 3 2 D 2 K+3 --

K B

(58)
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K2
3D(D - i_IK

4 - 3_ 2 + 3D 2
K

B

(58)

(Contd)

K3
4 - 3 2 + 3D 2 K_K

KB

K

(59)

3.1.2.2 Spring Rate for Elliptical Tank Bottom. In Reference 4, spring constants

are presented for ellipsoids/ tank bottoms, as determined from an analysis using

linear membrane theory. Graphs from which the spring constants can be obtained

are reproduced here.

Consider, once again, the tank shown in Figure 3. From Reference 4 the tank

bottom spring rate is given by:

2_ (3e - 292 (60)

KB= EhB [ 2 ]9 H(f, _)-2eG(f, _)+e F(f, v)

where

E = Young's modulus

hB = bulkhead thickness

a = radius of cylinder

b = bulkhead semiminor axis

L = height of liquid in cylindrical portion of tank

e = L/a

f = b/a

V = Poisson's ratio

The functionsH(f,v),G(,v), and F(f,lJ)are given in Figures 6, 7, and 8. These

functions are derived in Reference 4.

When the tank bottom is inverted as indicated by the dashed lines in Figure 3 the

expression for the spring rate becomes
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K' = Eh
B B

2
2_'(3e + 2f)

[ e ]9 H(f, g) + 2eG(f, _) + F(f, v)

(61)

2.8 1.4

V =

\ j//
%% 1/4 _'

0._ 0.4
0.5 0.6 0.7 0.8 0.9 1.0 0.5

f

Figure 6. Variation of F(f,v) with Depth- Figure 7.

to-Radius Ratio for Various

Values of Poisson's Ratio
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I.C
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I

Variation of G(f,u) with Depth-

to-Radius Ratio for Various

Values of Poisson's Ratio

1.0

3.1.2.3 Tank with Stringers and Buckled

Skin. A model cylinder with skin and

stringer construction is shown in Figure o.,

9. If the stringers have negligible radial

stiffness and the skin is unbuckled and

can displace longitudinally and radially, A 0.,

the tank models described in the preceding

subsections can be combined in parallel
0.

with a spring Ks, where

K = CA_,_E,stringers (62)
s L

is the total axial stiffness of the stringers

in the cross-section.

When the skin is partially buckled in

the axial direction, the axial stiffness of

the tank skin is

0.

0.5
0.$

Figure 8.

v=

0

/
1/4

///w

_e

0.6 0.7 0.8 0.9 1.0

f

Variation of H(f,v) with Depth-

to-Radius Ratio for Various

Values of Poisson's Ratio

KBu effective (63)
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TANK
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K3 K s

CYUNDRICAL TANK MODEL

Figure 9. Skin-Stringer Cylinder Tank Model

and the flexibility coefficient dll in Equation 51 becomes

1

dll =
KBu + K s

(64)

The center-of-gravity displacement due to the axial load FBu carried by the buckled

skin is then (neglecting the bulkhead and liquid compressibility effects)

vF
Bu

x21 - K
(65)

where K is the axial spring constant for the skin when unbuckled, Equation 50. That

portion of the load carried by the buckled skin is given by

KBu F 1
- (66)

+KFBu KBu s

where F 1 is the total axial load carried by the skin and stringers. Then

and

x21

vK F

Bu I (67)

K (KBu + Ks)

x21 v KBu

d21 =-_I = KCKBu+Ks)
(68)

The center-of-gravity displacement due to acceleration of the liquid in the tank is still

(neglecting bulkhead and compressibility effects)

4 (69)
d22 = 3---K
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Consequently, the flexibility matrix becomes

[d] =

1 v KBu

+K K +
KBu s (KBu Ks )

vK
Bu

K (KBu + Ks)

4

3K

(70)

After inverting the [d] matrix and solving for the spring rates, the values for the

model in Figure 10 are

K
1

K
2

K
3

3_ KBu

3v2 2
KBu

4-

K (KBu + Ks)

3K- 3y KBu

2
31J2 KBu

4-

K (KBu + Ks)

(4 - 3v) KBu+4K s

3 v 2 K 2
Bu

4-

K (KBu + Ks)

(7D

K1

mFJ

q

K2 :

//A////////A

Figure 10.

K3

//A

Skin- Stringer

Model with

Buckled Skin

3.1.2.4 Effects of Small Ullage Volumes. When the tank ullage volume is small,

any longitudinal oscillation of the structure can produce a corresponding oscillation of

significant magnitude in the ullage pressure. This can be the result of a longitudinal

force transient such as thrust buildup or launcher release.

The change in ullage pressure is due to a change in ullage volume and ullage gas

weight (if a pressure regulator is involved). In this section, a single-mode tank model

is developed for such a case. The effect of gas compressibility is included in the model

spring rates while the pressure change associated with a change in gas weight is used

as the forcing function for the tank.

In order to formulate an analytical representation for the perturbation changes in

the tank ullage, the following assumptions are made.
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a. Thegas, or mixture of gases, in the tank ullage behaves in a quasi-static manner.

b. The gas process is adiabatic.

c. The perturbation variables are small.

The equation of state for a gas (or a mixture of gases) at low pressure is given to a

close approximation by the equation below:

PV = WR T (72)
m

where P is pressure, V is volume, W is weight, T is temperature, and R m is the gas

constant for the mixture. In a strict sense, Equation 72 applies to a condition of ther-

modynamic equilibrium. It also applies (approximately) for a perturbation condition

when the changes in these variables are slow encmgh, and small enough, such that the

gas is at all times close to thermodynamic equilibrium. The gas is then said to be-

have in a quasi-static manner.

For an additional relationship between the variables in the tank ullage, it is con-

venient to assume that the process is adiabatic. In such case,

where 7m is the adiabatic exponent for the gas. In general, a polytropic exponent

would be used for Equation 73. However, in the frequency range of interest it can

be assumed that there is little chance for heat transfer to the gas so that the poly-

tropic exponent is close to the adiabatic value.

Equations 72 and 73 can now be combined to form the following equation:

1D = const.

7

WRm m (74)

A given tank may contain a mixture of gases. The total weight is then given by

W = W 1 + W 2 + ... (75)
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and the effective gas constant, R m, is defined by

W R 1 + W R 2 +i 2 ''"
R = (76)m W

where R 1, R2, etc., are the gas constants for the individual gases.

For small perturbations during flight, the change in tank pressure is defined by

the first terms of a Taylor's series, where the partial derivatives are evaluated at

the steady-state (or equilibrium) condition, i.e.,

8P
AP =

_W AW + _ AV (77)

S.S. S.S.

where AW is the change in ullage gas weight and AV the change in ullage volume.

For the steady- state condition,

= const.
(_WR / ym

m

V
(78)

The partial derivatives in Equation 77 can be evaluated by using Equation 78 to define

the proportionality constant, so that

W

AP = Pa = Kw'_ - KvV (79)

where s is the Laplace operator, and

K
W

K
V

_ m g

WR
m

m

i

V

(80)

where Rg is the gas constant for the pressurizing gas and where w = AW, v = AV, and

the bars denote steady-state quantities.
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Figure 11 shows a thin skin, cylindrical tank shell with an elliptical bulkhead for

the bottom. The top of the tank is assumed to be rigid and the tank is nearly filled

with liquid. Forces F 1 acting on the top of the tank, an effective inertial force, F2,

acting at the liquid center of gravity, and an ullage pressure change, Pa' acting in the
!

ullage space are also shown. The pressure change Pa represents only that portion of

the total pressure change in the ullage that can be attributed to a change in gas weight.

The compressibility effect, due to a change in ullage volume, is included in the model
I

spring rates. Therefore, from Equation 79, Pa is defined by

!

sp a = K @ (81)
W

or

I

Pa = Pa + K v (82)V

SMALL
ULLAGE

VOLUME"'--.._

FLEXIBLE BULKHEAD

WITH STIFFNESS KB_

2

LIQUID (_

Figure 11. Tank with Small Ullage Volume
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If the displacements of the tank top and liquid center of gravity are x I and x 2,

and the change in ullage volume is v a, then the relationship between forces, pressure,

displacement, and change in ullage volume is given by the matrix equations

or

x2L
I

v Ia

m

dll

= d21

n

dv 1
m

a

d12 dlv

d22 d2v

dv2

F 1

F 2

I

Pa

[d] IFI (83)

x I

x 2

V

a

m

d2 t I
vl I d2v dvl I Cdvl

dll- C +d I d21 C +d t C +d
w i vv I w

..... -L-- -I

dlv %2 I d 2 II 2v I C dv2

d12 C +d I d22 C +d II C +dvv t W v_¢

' t
I I Cd

C d lv t C d2v i vv

C+d ]C+d t C+d
w l w i vv_

F 1

F 2

I

Pa

(84)

1
where C = .--7- is the compliance of the gas in the ullage volume, and

r,v

dll d12 dlv

d21 d22 d2v

dv 1 dv 2 dw

: [d]
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C becomes inftuite and the model reduces to the basiC

tank modet.

The _d_ matrix can be inverted to obtain a sti_fuesS matrix:

'K_ K12 Klv (S6)

e gas compreSSibilitY is tucluded in the spring rates
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! I
F2 _ K2

The tank spring rates, defined in terms

of the stiffness matrix, are

' K3 K = -KI2 +' 1

K2v Kvl + K 22v

Klv K2v

K
VV

I_2 =K22 +K21-

2

Figure 12. Tank Model for Small Klv K2v + Klv

Ullage Volume I_ 3 = Kll + K12 -

K
VV

K
W

(S7)

3.1.2.5 Multimass Models. In most analyses of current vehicles, the structural

representations used have been based upon the tank model shown in Figure 5. This

model provides an approximation for the first (predominant) mode of the coupled pro-

pellant and elastic tank. However, it is known that higher modes exist in the tank and

a limited number of these may have a significant energy content, compared to the first,

and they do provide a resonant condition at discrete higher frequencies. This is

shown in Reference 10.

This implies one of two conditions. Either the higher tank modes are unimportant

and their omission does not affect the overall structural modes, or certain structural

modes are inaccurate because of this omission. The actual condition, of course, de-

pends upon many factors such as the type of structure, the propellant level, etc.

There has been very little opportunity to determine the accuracy of predicted ve-

hicle modes using current models. It is believed that, in most cases, the first mode

predictions are adequate and that any errors are incurred in the higher modes. This

should be particularly true when the propellant mass is large and represents a major

part of the vehicle mass.

It is desirable to further explore the importance or contribution of the higher tank

modes by developing a multimode tank model and using it in the structural representa-

tion for the vehicle. The initial results obtained by using this approach are discussed

in this subsection.

A discrete model for higher tank modes can be developed in a manner similar to

that used for the single-mass representation. Consider again the cylindrical tank with

an elliptical bulkhead as shown in Figure 13. Assume, for the present, that the bulk-

head is inelastic (rigid) and that the liquid is incompressible.
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l 1L 2

I

L 1

Figure 13. Two-Element Tank

Let the tank and propellant be divided

into two elements. A point on the tank at

the liquid surface, the center of gravity of

the upper element, and the center of gravity

of the lower element are denoted by Sta-

tions 4, 3, and 2, respectively. The pro-

peUant heights are L 1 and L 2 while the tank

wall thicknesses are h 1 and h 2.

The procedure used to develop a two-

mass model is exactly the same as that used

for the single-mass model. This procedure

can be expanded to any number of elements.

The following quantity is similar to

that from Equation 36.

2 b
.... 1 (88}

D1 3 L
1

while the axial rates at the two tank elements are given by

2y a Eh I /

K 1 = L1

l2 ?r a Eh 2

K 2 = L2

(89)

Next, consider the individual effects of an axial acceleration, _t on the two fluid

elements. The resulting radial deflections of the tank are shown in Figure 14a and b

along with the corresponding inertial forces, F 2 and F 3, actingat the two fluid center-

of-gravity locations. Finally, an external force, F 4, is considered at the top of the

tank. This produces the radial tank deflection shown in Figure 14c. The individual

axial and radial deflections of the shell can be evaluated using the shell equations.

This leads to the following influence coefficients.
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Figure 14. Assumed Forces on Two-Element Tank

_3

(c)

4

]
I
I
I
I
I

I
.3

d32 -

x32 2

F 2 D 1 K 1

X

22

d22 - F2

4

2

3D 1 K 1

d42 -

X
42 V

F 2 D 1 K 1

d23 -

x23 2

F 3 D 1 K 1

x33 4 4

d33 - F 3 = K'-l+3K---2

x43 2 v v

d43 F 3 K 1 K 2

x24 v

d24 = _ = D1 K 1

(90)
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x34 2 v v

d34 - F 4 - K 1 +K"2

x44 K 1 + K 2

d44 = "_'-4 = K1 K2

(90 Contd)

The influence matrix is then given by

[d]

D

d22

= d32

d42
m

d23

d33

d43

i

d24

d34

d44

(91)

B

4 l 2

2KI [ D1K 1
3DI [

I
__ 42 ] 4 +--

71%_,_9/9_
[

v I 2"-Y-u+ 2-
D 1 K 1 [ K1 K 2

m

l]

D 1 K 1

2_ P

K 1 K 2

K 1 + K 2

K 1 K 2

L
where for L 1 = L 2 = _- , Equations 88 and 89 become

4yaEh 1

K1 = L

(92)

4yaEh 2

K2 = L
(93)

4b

D 1 = 1-3-- _

For a particular tank, the coefficients of the [d] matrix can be evaluated. The [d]

matrix can then be inverted to obtain a stiffness matrix. Figure 15 shows a model

which would correspond to the stiffness matrix given by
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_34 I

m3[

K23}

KI2
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Figure 15.

3

i m2 KI3

/
/IIIIIIIIZ _'I//I//II/_

Two-Mass Tank Model

KI4

/L 1

[d] -1

m

K22

= K32

J

K23 K24

K33 K34

K43 K44 -

where the model spring stiffnesses are related to the stiffness matrix by

K23 = -K23

K24 = -K24

K34 = -K34

K12 = K22 +K23 +K24

K13 = K32 +K33 +K34

K14 = K42 +K43 +K44

(94)

(95)

This model can be generalized for many degrees of freedom by writing general expres-

sions for the influence coefficients of a multimass model. Also, the effects of a flexible

tank bottom and liquid compressibility can be included in the process.

32



3.1.2.6 Tanks with Conical Sections. A tank may be composed of a combination of

circular cylinder and conical segments where a change in vehicle diameter is re-

quired between stages. Figure 16 shows a typical example.

I
i I

Figure 16. Vehicle with Cone-Cylinder Tank

An approximate model for a tank of this type might be determined using a cylin-

der having the same mass and total axial stiffness. For the tank of Figure 17, the

axial stiffness is

_o L dX
K -- '

cc 2y aEh

K K
1 2

K 1 + K 2
(96)
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where

L

1
L2

b
L 1

/

LIQUID SURFACE

_. h, E

,/

Figure 17. Cone-Cylinder Tank

K 1 = cylinder axial stiffness

2_ ab Eh

L 1
(97)

Then

K2 = cone axial stiffness

K 1 L 1 sin

%
ab l°gttb - L2tan _/

(98)

K
CC

K
1

%
l+(LlS_in_') l°g(_o-L2tan_)

(99)

34



If mcc is the total mass of the liquid in the tank, and mcc and Kcc are used with rite
model of Figure 5 and Equations 56 and 57,

K1

K2

3vK
cc

3 (1 -V) K
cc

K3 _ (4-3u) K
4- 3v 2 cc

(lOO)

where the model is as indicated in Figure 18.

This model yields only approximately the correct

frequency; use of such a model in a complete vehicle

indicates that its frequency is too high. For a 10-

degree cone with L1/L 2 of about 0.4 for a first-stage

LO 2 tank, the resulting vehicle first-mode frequency
is about 20 percent too high in the first mode when

compared with flight data. As the liquid surface

K!
K3

mco[]

K 2

Figure 18. Equivalent

Cylinder Model

drops in the cone and approaches the top of the cylinder, the model frequency appears

to be more accurate. The apparent error of this model seems to be related to the

geometry of the cone rather than its stiffness.

An approximate model for the cone-cylinder tank could also be determined using

a two-degree-of-freedom model for the tank and assuming that the cone is rigid when

determining effects of propellant inertial forces. A model of this type is shown in

Figure 19.

The same notation is used as in Subsection 3.1.2.5 except that now Station 3 de-

notes the center of gravity of the liquid in the conical section of the tank. Now con-

sider the individual effects of an axial acceleration acting on each of the two fluid

elements. The resultant radial deformations of the cylindrical portion of the tank are

shown in Figure 20a and b along with the corresponding inertial forces, F 2 and F3, act-

ing at the two fluid center-of-gravity locations. The effect of an external force, F4, is
indicated in Figure 20c. The axial and radial deflections of the cylinder can be evalu-

ated using equations for strain developed in a manner similar to that of Subsection

3.1.2.1. This leads to the following approximate influence coefficient matrix:
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Figure 20. Radial Deformations in Two-Mass Cone-Cylinder Model
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where

[d3

4

3K 1

2C 0

K 1

1)

Symmetric

4C 2
0

K 1

2v C O

K
1

K 1 + K 2

K 1 K2

(101)

1

Oo_ 111_,o++_
(102)

a L

__ t - 1- --2tana

0 a b ab
(103)

and

{x2}x3 -- [d] F3

x 4 F 4

(104)

If we want to compute the natural frequency of the tank, the displacement x 4 need
not be considered:

__2

-1

E-:011x /*I,31 = o (lo5)

A nontrivial solution of the above equation exists only if the following determinant is

equal to zero:

1I[d] [M] --_ I
0_

1

d22 m 2 --_
_0

d23 m 2

d23m3

1

d33 m 3 - -_-
O.)

= o (lo6)
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where I is an identity matrix.

After substituting expressions for the influence coefficients and making the

following substitutions,

m 2 = Ir ab2 L 1 p

2
_a b L2P

m 3 -
C O

2
0_

O

3K 1

2

41r ab Llp

L 2

il-
L1

3 Eh

2 PabL12 (107)

then the determinant becomes

33
-_c 0 3tic 0- x

= 0

Expansion of the determinant leads to the characteristic equation,

(108)

where

X2-bX+c = 0 (109)

b = l+3flC 0

3

c =¥_c o

Two roots for ), result from the characteristic equation. The root corresponding

to the lowest natural frequency leads to
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where

c ol:l' ,I
I+R + [1 +R +R 2 1/2

(110)

R = 3tiC 0

A similar equation may be derived for the "equivalent" cylinder; letting the first

natural frequency from the equivalent cylinder be u] 1,

Wo! ÷i__
(111)

where

ab
L 1

The two equations given above were evaluated for a/3 range of 0 to 0.5 for a tank

with the following parameters:

a = i0°

a b = 60 in.

L 1 = 310 in.

The results are shown in Figure 21. The two-degree-of-freedom model gives a

frequency increasingly lower than the equivalent cylinder model as fl increases, i.e.,

as the liquid level rises higher and higher in the cone. The value of fl = 0.42 corres-

ponds to about the propellant configuration of an Atlas LO 2 tank at liftoff. For this

value offi, the natural frequency given by the equivalent cylinder model is about 17

percent higher than the value given by the cone-cylinder model o

The equivalent model for the cone-cylinder tank would be obtained by inverting

the flexibility matrix of Equation 101 (in a manner similar to that of Subsection

3.1.2.5).
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IK22 K23 K241

[K_ = [d_-I = LK32 K33 K34]

LK42 K43 K44J

(112)

The corresponding spring-mass model (see Figure 19) is

- 3
= = -- K

K23 -K23 2C 0 1

= --- 0
K24 -K24

where

- v
---- 2 K1

K34 = -K34 - 2C0(K-v )

+ + (6-_-0-Z-_)K
K12 = K22 K23 K24 --- 2C 1

0

4K- 3V 2 -2C0v- 6C01K- I)2) K 1____ -f- _

K13, K32 + K33 K34 2 --- 2
4C 0 (K - V )

- = - (2C0 - Y) K
= 2 1

K14 K42 + K43 + K44 2C0(K- IJ )

K 1
K =

K
ec

,(113)

3.1.3 LOCAL STRUCTURE EFFECTS. The stiffness of local structure may be

evaluated in detail using methods for representing complex structure such as that

presented in Reference 6 or by direct tests after the hardware has been built. Tests

on local structure are advised where practical since difficulties are often encountered

in representation of support structure for engines, payloads, and components.

3.1.4 TEMPERATURE. Extreme temperatures ranging from cryogenic to several

hundred degrees Fahrenheit may affect the value of the modulus of elasticity of impor-

tant portions of the vehicle structure. The correction required may affect frequencies

by several percent at certain times of flight and should be taken into account if this

degree of accuracy is required.

3.1.5 EFFECT OF AXIAL LOAD ON STIFFNESS OF SKIN-STRINGER STRUCTURES.

This subject was covered in Subsection 3.1.2.3 in the discussion of a tank with strin-

gers and buckled skin. Any skin and stringer structure has an axial stiffness that is

the sum of the stiffnesses of the stringers plus the effective stiffness of partially

buckled skin between the stringers.

3.1.6 IMPROVED ANALYTICAL MODEL. The model of Reference 5 uses a finite

element technique to construct the total launch vehicle stiffness matrix [K] and mass

matrix [M] by dividing the vehicle structure into axisymmetric shell, fluid, and

spring-mass elements.
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Axisymmetric shell elements are used to represent fairings, interstage adapters,

bulkheads, and thrust structures. The fluid elements used have motions consistent

with containing shell elements. Spring-mass elements are used to represent equip-

ment and engines.

Figure 22 illustrates a vehicle and its idealization into the three basic types of

elements.

LONGITUDINAL
VEHICLE AXIS

FAIRING_

PAYLOAD_

MISSILE

SHELL "_

FLUIDJ

PROPELLANTS_

ENGINE_

/

A. LAUNCH VEHICLE

X#U

B. SYSTEM COMPONENTS

BULKHEAD

jSUPPORT

jENGINE

Figure 22. Vehicle and Idealization in Basic Components

t Figure reproduced from Reference 5, page 2.2.
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The Rayleigh-Rttz technique is used with assumed polynomial displacement

patterns to determine shell and fluid element mass and stiffness characteristics. The

stiffness and mass matrices for the complete vehicle are obtained by superposition of

the stiffness and mass matrices of the individual shell, fluid, and spring-mass

components.

In the Raylelgh-Ritz method a stiffness matrix is determined for each element

from the strain energy of the element. The strain energy of the element can be

determined from the assumed displacement functions and the stress-strain laws as-

sumed for the shell element. The strain energy for a shell of revolution due to axi-

symmetric loading is

V = fr ¢¢ + Ne_e + McKb+ Me Ke + N¢ p
ds (114)

where

-\
-- +w/

rI_d

(V cot ¢ + V¢)
CO - r2

K¢ = r--_ d-_

r2 [r I

1 dW
P = r de

1

(115)

where r 1 and:2 and the radii of curvature of the shell in the meridional and hoop

directions, N_ is the initial meridional stress, and

N¢ = Cll f¢ + C12 _

NO = C12 c¢ + C22 c8

Me = C33 K¢ +C34 Ke

M{} = C34K¢ +C44K e
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where

v_11 " " " C44 are orthotropic constants,

Me' M 0

_¢, c 0

= meridional and hoop load per unit length

= meridional and hoop moment per unit length

= meridional and hoop strain

= meridional and hoop curvature

Similarly, mass properties for fluid and shell elements may be computed from

their kinetic energies based on the assumed displacement functions. This method, in

the current programmed form of Reference 5, has been applied to analysis of a one-

tenth scale Saturn V model as reported in Reference 11o

The method appears to be the most general method available for analysis of a

complete vehicle. It overcomes many of the limitations of the approximations re-

quired in developing the discrete lumped parameter models discussed earlier. In

its current form (Reference 5) it will not handle such tank configurations as the cone-

cylinder tank discussed in Subsection 3.1.2.6; it does not account for ullage gas

effects, etc. However, the generality of the basic method would conceivably permit

the model of Reference 5 to be extended to account for such effects.

3.2 ADDING COMPONENTS USING MODE SYNTHESIS

Frequently it is desirable to make a parameter study to determine the effect on ve-

hicle response resulting from changes in the characteristics of a specific area or

component, e.g., a sloshing mass or engine system. Rather than make several

analyses of the system, changing but a fraction of the parameters each time, the

vibration characteristics of the system excluding the specific varying parameter may

be calculated, and then modified by coupling the parameter back in through the mode

synthesis technique (discussed in References 12 and 13).

The equations of motion may be written for all components of a system. The

equations may be written compactly in the uncoupled form for components of a system

having an arbitrary number of components. Interpreted physically, this can be con-

sidered to be a set of equations of motion for a group of components which are not

connected. A set of relationships exists which corresponds physically to connecting

the components to form a system. These relationships result from requirements

that displacements at mutual attachment points must be equal. This corresponds to a
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transformation relating the componentcoordinatesto the system coordinates. The
details of the transformation dependon the system beinganalyzed.

This same discussion applies in a similar manner to normal modes of components.

The motions of one component may be expressed in terms of its normal modes while

the motions of a second component may be determined in terms of its normal modes.

The normal modes of the combined system may be determined in terms of the compo-

nent modes by satisfying the requirements for compatibility of displacements at the

attachment points between the two components.

This method would be useful, for instance, for determining the natural modes

and frequencies of a launch vehicle with several different payload configurations. The

natural modes of the vehicle could be computed for the vehicle without the payload and

for the payload alone; the combined system could then be determined in terms of these

modes for each payload configuration.

The method offers the advantage of being able to combine analytically determined

modal data with experimentally determined modal data where available. For large

struetures_ modes of individual portions may be determined by test, while tests of the

entire structure may not be practical.

3.3 CORRECTING MODEL BASED ON TEST RESULTS

The final evaluation of analytical techniques is a comparison with experimental data.

Perfect comparisons are indeed exceptions, since both the analytical model and ex-

perimental model are approximations to some extent. The analytical approximations

have been discussed. The major experimental approximations are centered around

suspension system effects and vehicle modifications required to accommodate the

suspension system. No general rule can be made to obtain better agreement between

test and analysis. Careful examination of the data and the structure will probably in-

dicate several areas where the representation is inadequate or does not define the

test specimen. Possible causes of differences are:

a. Effects of suspension system on test environment.

b. Stiffness of joints or trusses.

c. Assumed planes of symmetry are incorrect.

d. Effect of large components such as engines.

e. Experimental modes may be impure, i.e., not orthogonal.

f. Effects of moment of inertia.

g. Nonlinearity.
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The work of Reference 14 presents a method for obtaining the flexibility matrix

from experimental mode data. The procedure orthogonalizes the experimental modes,

using an analytical mass distribution, and then derives the flexibility matrix of the

structure. This method can be useful if complete and accurate experimental data are

obtained for a system difficult to model. It can also be used to locate possible dis-

crepancies between analytical and experimental results.

3.4 SOLID-PROPELLANT BOOSTERS

The structural dynamics of solid propellant rockets have generally been treated by

continuous representations, for instance as in Reference 7. The effective longitudinal

stiffness of the core depends primarily on the shear stiffness of the solid propellant.

Inertial forces acting on the core material are transmitted to the rocket casing through

shear stresses developed in the core material. An element of a solid-propellant rocket

is shown in Figure 23.
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Figure 23. Solid-Propellant Rocket Element
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The inertial forces p _ acting on the core cause shearing of the core relative to

the casing and produce an increment of axial force in the casing, _Nx, over the length
dX. The shear deformation is indicated under axial acceleration of the element. A

simple model for the solid-propellant rocket conld be obtained by integrating the ef-

fects of axisymmetric shear deformations of the propellant and axial deformations of

the casings. The propellant may be relatively more flexible than the casing; the

casing might then be assumed rigid.

Reference 7 provides a more detailed analysis of the structural dynamics of a

solid-propellant rocket; included are stress-strain laws for solid-propellant materials.

Several problems are considered using a continuous representation of the solid-

propellant rocket.

Once a model for the solid-propellant rocket is obtained, the remainder of the

vehicle can be modeled in the same manner as for a liquid-propellant vehicle.

3.5 CLUSTERED BOOSTERS

One method for obtaining the higher thrust required for large payloads is to attach

rocket engines or motors to a central core; for liquid-propellant boosters a peripheral

ring of propellant tanks is attached to a central tank and the engines are supported on

truss members connecting the tanks; for solid-propellant boosters, the motors are at-

tached to a central solid- or liquid-propellant booster. These clustered tank designs

destroy axial symmetry and quite often planes of symmetry. Such configurations re-

sult in a more complicated dynamic model where a number of cylindrical tanks are

coupled by their elastic connections and must be allowed freedom in several directions

for adequate description of vehicle modes (see Figure 24).

For preliminary design it is sufficient to choose approximate planes of symmetry

and analyze the vehicle for bending modes in pitch and yaw planes using branch beams

connected to the central core by translational and rotational springs. Simplified tor-

sional and longitudinal models will also suffice at this stage. These simple models

can be used to identify possible problem areas (such as relative modal frequencies)

and provide design criteria for the connections between tanks.

A complete analysis (or carefully conducted test) should be undertaken to describe

all the primary modes of the clustered vehicle. This analysis would provide transla-

tion and rotation in two mutually perpendicular planes; torsion and longitudinal motion.

The model of the tanks for translation and rotation in each of the two planes would be

very similar to that discussed for the cylindrical booster. Provision must be made to
account for the motion of the outer tanks in these two directions due to the torsional

displacement of the central tank and the elastic connections. It is also possible that

47



PAYLOAD,._.,_

\
I

CENTRAL CORE

LIQUID-PROPELLANT
BOOSTER

ATrACHED SOLID-

PROPELL._gr.,_
BOOSTER

I

Figure 24. Titan IIIC

longitudinal motion will couple with lateral

and torsional displacement. As an example,

consider a cluster arrangement where the

connection at the bottom provides moment,

shear, and axial restraints while the con-

nection at the top provides only shear res-

traint. Then it is possible to find a mode

where the external tanks are bending, caus-

ing moments and deflections at the connection

to the center core which will result in longi-

tudinal motion of the core. The significance

of these types of modes can be ascertained

only from the analysis (or test) and can vary

greatly from vehicle to vehicle.

The torsional properties in the model can

be represented by the torsional stiffness and

roll inertia of each tank. The tanks must

then be connected by the elastic properties

of the truss. The complete model for the

clustered booster then consists of the axial

load, shear, bending moment, and torque.

The top connection transmits only shear. Be-

cause of the nature of the connections, it can

be seen that yaw bending and longitudinal

coupling can occur. Pitch bending and tor-

sion represent another possible coupling

mechanism. Storey in Reference 14 develops

the coupled flexibility matrices for these two

conditions. This method encountered diffi-

culty in that the number of stations required

for adequate representation of the system

with the required transformations exceeded

computer capacity.

The final Titan IIIC analysis presented

in Reference 15 utilizes the mode synthesis

approach. The longitudinal, torsional, and

pitch and yaw bending modes are determined

for each tank and are then coupled by the

elasticity of the connecting elements. The

influence coefficients for these trusses were

obtained experimentally. A comparison of

analytical and 1/5-scale experimental re-

sults is given in Reference 17.
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3.6 LATERAL-TORSIONAL-LONGITUDINAL COUPLING

The typical axisymmetric-cylindrical space vehicle is analyzed as if lateral, torsional,

and longitudinal motion are not coupled. Actually, these vehicles are not completely

symmetric and a possible coupling mechanism, however slight, can always be found.

The importance of this coupling can vary greatly from vehicle to vehicle and even if it

is known to exist from flight or experimental data, the coupling mechanism is difficult

to identify. These coupling problems often occur when the modal frequencies of two

modes, say, one lateral and one torsional, are very close together. Then a very small

coupling mechanism, such as center-of-gravity offset from the supposed line of sym-

metry, can result in coupled motion.

A comparison of the frequencies of the modes in the three directions should be

made to determine the existence of modes of nearly equal frequency. If such a condi-

tion exists, it is necessary to examine the condition under which this may cause a sig-

nificant problem. As an example, if excitation of a bending mode by an atmospheric

disturbance occurred, could this cause excitation of a critical torsional mode at this

same frequency ?

Cylindrical vehicles with unsymmetric upper stages or payloads of large mass can

cause coupling in the various directions in the low-frequency modes. The model and

analysis then become complicated and approach that of the clustered boosters. Repre-

sentation of this configuration requires detailed description in the unsymmetric stages

and an analysis as described later for clustered boosters. Preliminary work would

indicate the degree of sophistication to be used for adequate representation for loads

analysis.

The Saturn I vehicle consists of a center LO2 tank with eight peripheral tanks for

alternating LO 2 and RP-1. These tanks are connected at top and bottom by trusses
providing axial, shear, and torsion restraint in both planes at the bottom plus moment

restraint in the tangential planes. The top connection provides similar restraint ex-

cept for the fuel tanks which do not transmit axial load. The trusses are not symmetric

with respect to planes of symmetry of the tanks, but this effect is small so that planes

of symmetry as defined by the tanks do not introduce large errors.

Milner (Reference 18) establishes theoretically the uncoupling of pitch, yaw, and

torsion modes for a symmetrical cluster booster and investigates the effect of minor

asymmetry. Results of this study indicate that the effect of such coupling on natnral

frequencies is minor; mode shapes are not presented.

Lianis (Reference 19) develops a matrix solution of the dynamics problem of a
four-tank booster without center core. The flexibility matrix of the whole unit, with

appropriate beam end fixity, is derived. This flexibility matrix together with a suit-

able mass matrix is used to derive equations of free vibration in matrix form. The

tanks are assumed to be similar, but the solution can be modified accordingly for the
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case of nonsimilar tanks and for other tank configurations. The formulation is general

so as to furnish any complex mode of vibration. Simple modes, however, can be ob-

tained as particular cases of the general problem.

3.7 DAMPING EFFECTS

Dissipative (damping) forces exist in the vibrating structure as a result of material

strain hysteresis and coulomb friction in structural joints. The nature of these damp-

ing effects is obscure and does not lend itself to analysis other than an approximate

empirical treatment, by which the gross effect of these scattered dissipative mecha-

nisms is represented as equivalent viscous damping, added to each mode as appropri-

ate. The damping is thus assumed to produce no coupling between modes. While this

mechanization is not entirely realistic, it is justified by two observations: First, the

actual damping is very low and is found by test to produce little coupling. Thus nearly

pure normal modes of a system may be excited and the system observed to decay al-

most harmonically. The indication given is that velocity-dependent coupling is very

small. Second, if an attempt is made to show a velocity-dependent coupling, the co-

efficient would have to be determined experimentally. Since the direct damping coef-

ficient is itself difficult enough to measure it is clear that the accuracy of a study

cannot be increased by the introduction of still more suspect data. The structural

damping force is a function of the deflection of the generalized coordinate of the mode

but in phase with the velocity of the generalized coordinate of that mode. To treat this

damping as viscous damping requires that the mode oscillate in a quasi-harmonic man-

ner. This damping force may then be expressed as a damping factor, On, where
2{nOJn_ n is the internal damping force of the nth mode per unit generalized mass.

Fluid propellant damping forces result from the dissipative nature of a viscous

fluid undergoing shear. Although there are some approximate methods for calculating

damping forces, these forces are most commonly arrived at by testing the actual tank,

in the case of small vehicles, and a model tank in the case of large vehicles. These

forces may be represented as a propellant damping factor, _n' in the expression
2_n_n _n which is the damping force per unit sloshing mass and _n is the lateral ve-
locity of the n th sloshing mass.

Aerodynamic damping forces result from lateral velocity of the vehicle which

causes, for any particular point on the vehicle, a small angle of attack. The aerody-

namic force associated with this angle of attack opposes the lateral motion, thereby

dissipating energy. The aerodynamic damping forces are easily calculated and are, of

course, a function of f n. Aerodynamic damping on launch vehicles is often not impor-

tant for dynamic load analyses; however, for some configurations, e.g., hammerhead

payloads and winged payloads, it may need to be considered.
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4/METHODS FOR SOLUTION

4.1 FORMATION OF THE EQUATIONS FOR SOLUTION

The longitudinal model provides a mathematical representation of the real physical

system. As outlined in Section 3, dynamic characteristics of the model are deter-

mined from the mass, stiffness, and dynamic matrices.

4.1.1 STIFFNESS MATRIX. Formation of the dynamic matrix for computation of

modal properties requires formation of the mass and flexibility matrices. The flexi-

bility matrix is not ordinarily formed directly but is usually obtained by inversion of

the stiffness matrix. (See the Reference 8 matrix inversion methods.) This proce-

dure is followed since the stiffness matrix can generally be formed in a simpler and

more direct manner than the flexibility matrix (see Reference 6).

Where spring-mass models are employ-

ed, the relationship between spring constants

and the stiffness matrix is fairly simple.

The stiffness matrix element Kij is the force
at i due to a unit displacement at j only with

all other displacements equal to zero. Off-

diagonal elements Kij of the stiffness matrix
are simply the negative value of the stiffness

of the spring connecting node i to the node j

of the model. The diagonal element Kii of

the stiffness matrix represents the sum of

the stiffnesses of all springs connected to

node i. As an example, consider the spring-

mass model of Figure 25.

The stiffness matrix for the model re-

lates forces to displacements as follows.

Fl'Xll

F 2, x2

F 3 , x3

F 4, x4_

Figure 25.

3 K24

Spring-Mass Model

_F1TM

F 2

F 3

F 4

K12

-K12

0

0

-KI2

KI2 + K23 + K24

-K23

-K24

0

-K23

K23 + K34

-K34

0

-K24

-K34

K24 + K34

x 1

x 2

x 3

Ix4

(117)

Note that the coefficients in column one are forces due to a unit displacement at node

1 only with displacements at 2, 3, and 4 of zero. The force required to produce the

unit displacement at node 1 is K12 while -K12 is the reaction at 2 corresponding to the

unit displacement at 1.
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If thefollowing stiffness matrix is for absolutedisplacementsof a free structure,

Kll K12 K13-__K] = K21 K22 K231 (118)
_K31 K32 K33_J

and the associated mass matrix is a diagonal matrix, the corresponding model and

springs are

K12 = -K12

K13 = -K13

K23 = -K23

,(119)

where the model is given in Figure 26.

The methods for deriving stiffness matrices or

spring-mass models for propellant tanks and other por-

tions of the structure were discussed in Section 3. Assem-

bly of the vehicle stiffness matrix is accomplished by su-

perposing or adding the stiffness matrices of the individual

elements.

One of the problems of obtaining a solution to the

equations of motion for a free-free structure with no

external forces applied is that the stiffness matrix of

such a structure is singular. The structure could move

as a rigid body upon application of any external force.

E3
KI2

[]
K23

3

Figure 26.

KI3

Model Corres-

ponding to

Stiffness Matrix

In this instance inverting the stiffness matrix to obtain a flexibility matrix may not be

done directly. Several methods are available to overcome this difficulty. They are

essentially the use of an additional equation, which states that for free vibration of a

free-free structure the summation of the inertial forces is zero:

m

-o_2 E m.x.
1 1

i=l

= 0 (120)

From this equation we may choose an arbitrary mass, say ml, and let
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In

mlXl = -Z mixi
i=2

(121)

therefore

In

x I = -m I m I x i
(122)

Then in matrix notation,

-1

Xl = _ml <m2m 3 ...... mm> Ix'}

= <E> {x'}

Then

Then from Equation 12, page 7, with the stiffness given by

DEKe:--i-}J
_x'}

Expanding the second equation,

-002 [m'] Ix} +[{7] <E> +[_]] {x'] = 0

Therefore

[K'] = [_'} <E> + [_]

(123)

(124)

(125)

(126)

(127)

(128)

(129)
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and

1 ,} ,]-1
--_ {x = [K Ira'] [x'] (130)
¢D

The above equation may be used to solve for the natural modes and frequencies of

the free structure. Once x' has been determined, x 1 may be determined from

Equation 123.

4.1.2 FLEXIBILITY MATRIX. The flexibility matrix may be developed directly for

simple statically determinant structures by determining the displacements due to unit

loads. However, obtaining the stiffness matrix and inverting it is easier when very

many redundancies exist in the structure. For direct development of the flexibility

matrix in terms of the flexibility matrices of individual structural elements for com-

plex structures, see Reference 20.

4.1.3 TRANSFORMED MASS MATRIX. An approach that is particularly advantageous

for close-coupled systems is that of transforming the coordinate system from the abso-

lure to the relative sense. In prior discussions the displacements of the system co-

ordinates have been referenced to a fixed point or neutral position. These same dis-

placements may also be expressed relatively; referenced to an adjacent coordinate.

2_ne relationship between displacements in absolute terms, ix}, and the displacements

in relative terms, [_}, is readily described by a simple transformation matrix:

ix} = IT] {x} (131)

Thus the kinetic energy of the system can be expressed in terms of relative co-

ordinates by

2KE = {_}' IT]' [M] IT] ix] (132)

The deflections of the connecting springs are expressed in terms of relative co-

ordinates, which in its most general form requires another transformation matrix.

{A} = [TR] {_] (133)

If the number of springs is equal to or less than the number of inertias, the de-

flection of each spring will be defined by a different relative displacement; consequently

the transformation matrix, [TR], can be written as a diagonal matrix of unit elements.

For such a case, FTR] may be neglected without affecting the solution.

The potential energy of the system is given by

2PE = [x}'[TR]' [K] [TR] {x} (134)

where K is a diagonal matrix of the spring rates.
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Substitutingthe kinetic energy and potential energy terms into LaGrange's equation

d |b(KZ) } 5PZ 5W

+ - 0bq i bq i
(135)

the equations of motion become

IT]' [M] IT] {_,] + [TR]' [K] [TR] {_} = 0 (136)

and the dynamic matrix is established by

The advantages of this method are greatest when the system is free or cantilever-

ed and multiple load paths are absent or constitute only a minor portion of the system.

Under these conditions, the transform matrix [TR] contains little or no off-diagonal

terms; the matrix [TR]' [K] [TR] is no more than slightly coupled and may be in-

verted with a minimum of effort.

When the number of springs is equal to or less than the number of inertias, the

transform matrix is a diagonal matrix of unit elements; [TR] ' [K] [TR] reduces to

[K] which, being a diagonal matrix, can be immediately inverted by taking the reci-

procals of the individual elements of the diagonal. The dynamic matrix can be deter-

mined with a minimum of effort and operated on to obtain modal data.

4.2 SOLUTION FOR CHARACTERISTICS

After the stiffness and mass matrices for the model are formed, the equations of

motion may be written with external forces equal to zero. This set of linear differ-

ential equations may be solved for modal properties by several techniques. If the

equations for harmonic motion,

-oz2 [M] [x} + [K] [x} = 0 (138)

are written in the form

[K] -_z 2 [M] 1 {x} = 0 (139

then for

Ix} o
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a solution exists only if thedeterminant

IEK_-0_2[MJl = 0 (140)

Expansion of the above determinant leads to a polynomial. If [K] and [ M] are n th

order matrices, the polynomial (characteristic equation) will be n th order and have

n roots. The roots of the polynomial yield the natural frequencies o_. Particular

natural frequencies may be inserted in Equation 139 to determine the corresponding

natural mode shape. This procedure results in determination of all natural frequencies

and mode shapes. The method is very useful for small matrices but becomes difficult

to use for large matrices. Since only lower frequency modes are generally of impor-

tance, other methods are usually used which do not require direct solution for the roots

of the characteristic equation. Among these methods are the matrix iteration, Holtzer

(Myklestad), and energy (Rayleigh-Ritz) methods. Matrix iteration is discussed in

References 8 and 21; the Holzer (Myklestad) method and the Rayleigh-Ritz method are

discussed in References 21 and 22.

4.3 MODAL SYNTHESIS

If a structural model requires a very large number of degrees of freedom, compu-

tation of modal properties of the entire structure directly may pose a difficult pro-

blem. The structure could be divided into several parts and the modal properties

could be computed for several modes of each part. The dynamic properties of the

entire structure could then be determined from the properties of the parts using the

method of modal synthesis. This method is discussed in detail in References 13, 21,
and 23.
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